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Abstract

Considering a gas of self-propelled particles with binary interactions, we derive
the hydrodynamic equations governing the density and velocity fields from the
microscopic dynamics, in the framework of the associated Boltzmann equation.
Explicit expressions for the transport coefficients are given, as a function of the
microscopic parameters of the model. We show that the homogeneous state
with zero hydrodynamic velocity is unstable above a critical density (which
depends on the microscopic parameters), signalling the onset of a collective
motion. Comparison with numerical simulations on a standard model of self-
propelled particles shows that the phase diagram we obtain is robust, in the
sense that it depends only slightly on the precise definition of the model. While
the homogeneous flow is found to be stable far from the transition line, it
becomes unstable with respect to finite-wavelength perturbations close to the
transition, implying a non-trivial spatio-temporal structure for the resulting
flow. We find solitary wave solutions of the hydrodynamic equations, quite
similar to the stripes reported in direct numerical simulations of self-propelled
particles.

PACS numbers: 05.70.Ln, 05.20.Dd, 64.60.Cn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the recent years, a lot of effort has been expended with the aim of explaining the collective
behaviour of living systems [1]. Such collective behaviours can be observed on many different
scales including mammal herds [2], crowds of pedestrians [3, 4], bird flocks [5], fish schools
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[6], insect swarms [7], colonies of bacteria [8], molecular motors [9, 10] and even interacting
robots [11]. It turns out that the collective properties of such systems seem to be quite robust and
universal. Accordingly, this field attracted the interest of the statistical physics community with
the challenge of introducing minimal models that could capture the emergence of collective
behaviour. One important class of models consists of the so-called self-propelled particle
models, for which the onset of collective motion without a leader is present. Vicsek et al
[12, 13] introduced a simple model defined on a continuous plane, where agents (or animals)
are represented as point particles with a velocity of constant amplitude. Noisy interaction
rules tend to align the velocity of any given particle with its neighbours. Extensive numerical
simulations of this model have been performed [14, 15], showing the presence of a phase
transition from a disordered state, at high enough noise, to a state with collective motion.
A different approach is to consider the problem at a coarse-grained level and to describe
the dynamics in terms of hydrodynamic fields. The equations governing the evolution of
these hydrodynamic fields can be either postulated phenomenologically [16], on the basis of
symmetry and conservation laws considerations [17, 18], or derived from specific microscopic
models [19, 20]. The equations of motion of the hydrodynamic field are derived from the
microscopic model through a Boltzmann approach.

Following an earlier publication [19], the motivation of the present work is to derive, from
a microscopic model, the hydrodynamic equations describing at a coarse-grained level the
flow of self-propelled particles (SPP) and to compare the resulting description with numerical
simulations of an agent-based model of SPP. The analytical framework we use is that of the
Boltzmann equation. Accordingly, a suitable microscopic model for such a treatment is a
continuous time model with interactions reducing to binary collisions. In order to show that
the most salient features of the coarse-grained analytical description are not specific to a binary
collision model, we use for the numerical simulations a standard agent-based model [12, 13]
that has been well characterized in the literature [14, 15]. Note that some comparison with
numerical simulations of an agent-based model with binary interaction have already been
presented in [19].

2. Microscopic models of interacting self-propelled particles

2.1. Definition of the models

2.1.1. Continuous time model with binary collisions. Following [19], we introduce a simple
model that captures the essential physics of assemblies of self-propelled particles, while being
suitable for a description in terms of a Boltzmann equation. We consider the evolution of
self-propelled point-like particles on a two-dimensional plane. The displacement of each
particle i is governed by a velocity vector vi . In order to account for the self-propelling
property, we assume that the modulus of the velocity vector is fixed to a value v0, identical
for all the particles, so that only the direction of the vector plays a role in the dynamics.
The relevant dynamical variables are then the angles θi that the vectors vi form with a fixed
reference direction. It is important to note, at this stage, that fixing the modulus of the velocity
breaks the Galilean invariance of the system. Hence one should not expect that the eventually
obtained hydrodynamic equations obey such an invariance, contrary to what happens in usual
flows.

Apart from the ballistic evolution according to their velocity vector, particles also
experience stochastic events that punctuate their dynamics. These stochastic events are of
two different types. The simplest ones are self-diffusion events, that is, the angle θ of an
isolated particle changes, with a probability λ per unit time, to θ ′ = θ + η, where η is a
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noise with distribution p0(η) and variance σ 2
0 . In the following, we consider a Gaussian

distribution for p0(η), also taking into account the periodicity of θ . This type of stochastic
events lead to a diffusive behaviour at large scale, thus preventing the system from having
a trivial (pseudo)collective motion, of purely ballistic nature. To drive the system into an
organized state where a genuine collective motion sets in, one has to introduce interactions
between the particles. Given that we wish to use a Boltzmann approach to study the model,
it is natural to consider binary interactions between particles. These binary interactions are
introduced as follows. When two particles get closer than a threshold distance d0, their velocity
angle θ1 and θ2 are changed into θ ′

1 and θ ′
2 according to

θ ′
1 = θ + η1[2π ], θ ′

2 = θ + η2[2π ], (1)

where θ is defined by

θ = arg(eiθ1 + eiθ2). (2)

The noises η1 and η2 are independent Gaussian variables with variances σ 2. Note that σ 2 may
differ from the variance σ 2

0 of the noise associated with the self-diffusion of particles.

2.1.2. Agent-based model for numerical simulations. In order to compare the results of the
analytical approach based on the binary collision model to direct numerical simulations, we use
a slight generalization of the standard Vicsek model [12, 13]. The motivation for simulating
numerically a model different from the one we used in the analytical approach is twofold.
First, the Vicsek model has been thoroughly characterized in the literature [13–15], making it
a useful benchmark for comparison. Second, and most importantly, a model with continuous
time dynamics and binary collisions is well-suited for a Boltzmann equation approach, but
very inefficient from the point of view of direct numerical simulations. In contrast, the Vicsek
model, with a discrete time dynamics and multi-neighbour interactions, is much more efficient
to simulate.

The agent-based model that we consider consists of N particles on a two-dimensional
space of area L × L, with periodic boundary conditions. Each particle j at any instant t
has a constant modulus speed v0. This property allows the mapping of velocity on complex
numbers. Then a particle is located by a two-coordinate vector xt

j and an angle θ t
j which gives

its speed direction. We define the vicinity V t
j of j at time t as the disc centred on j with a

radius d0. Then the direction of j at the next instant t + �t is simply the direction of the
averaged speed over all particles which are embedded in its vicinity, including j itself, up to a
noise term. If there is no neighbour in the disc of interaction, self-diffusion occurs randomly:

θ t+�t
j =

⎧⎪⎨
⎪⎩

arg
[∑

k∈V t
j

eiθ t
k

]
+ ηξ t

j , if V t
j �= {j},

θ t
j + η0ξ

t
j , with probability λ�t, if V t

j = {j},
θ t
j , with probability 1 − λ�t, if V t

j = {j},
(3)

xt+�t
i = xt

i + v0 e
(
θ t+�t
j

)
�t, (4)

where e(θ) is the unit vector of direction θ . The parameters η and η0 are the noise amplitudes
for collision and self-diffusion, respectively. The random number ξ t

j is uncorrelated in time
and from one particle to another. Its distribution is flat on [−π, π ]. The slight generalization
with respect to the standard Vicsek model consists in the introduction of the parameter λ,
which characterizes the probability of self-diffusion per unit time. In the original model,
λ�t = 1. Note that, whenever possible, we have defined the agent-based model with notations
consistent with that of the binary collision model, in order to facilitate comparison between
the two models.
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The Vicsek model has been studied in details in the literature [12, 14, 15]. A transition
towards collective motion has been reported in early studies [12], and later shown to exhibit
strong finite size effects [14]. In appendix A, we recall the methodology used to study the
transition, in particular the finite size scaling effects.

2.2. Dimensionless parameters

A first step in the understanding of the models is to identify the relevant dimensionless
parameters and the possible regimes. Let us first consider the different length scales appearing
in this problem: the interaction range d0, the ballistic length 	bal = v0/λ and the typical
distance between particles 	pp = 1/

√
ρ. With these three different lengths, one can form the

following dimensionless numbers H and B:

H = 	pp

d0
= 1

d0
√

ρ
, B = 	bal

d0
= v0

d0λ
. (5)

H characterizes whether a system is diluted (H � 1) or dense. One can see B as the relative
weight of stand-alone flight over interaction. If B is large, ballistic flight is more important
than collision and we can expect that particles are less correlated locally.

These numbers turn out to play an important role in the identification of the regimes of
validity of the approximations we use, as seen in the following. The model also exhibits
different behaviours for the different regimes which are defined by these numbers. At fixed
noise intensity and fixed B, a more (resp. less) dense system is expected to move (resp. not)
in a collective manner. At fixed noise and fixed dilution H, increasing B makes the flights
more ballistic, which should favour collective motion. So one can guess that a relevant control
parameter will be a combination of H and B (see section 4.1).

2.3. Summary of the main results

The paper is organized as follows. Section 3 is devoted to the derivation from the Boltzmann
equation, through a specific approximation scheme, of the hydrodynamic equations for the
continuous time binary collision model. Section 4 deals with the analysis of the phase diagram
of the binary collision model, by looking at the stationary homogeneous solutions and studying
their linear stability. A transition toward collective motion is observed, but the spatially
homogeneous motion turns out to be unstable in the validity domain of the hydrodynamic
equations, namely close to the transition line. A comparison with the agent-based model
is presented, showing that the transition lines of both models are qualitatively similar and
share some quantitative properties. Then, section 5 investigates the behaviour of the binary
collision model beyond the strict domain of validity of the hydrodynamic equations. A direct
stability analysis shows that far from the transition line, the spatially homogeneous motion is
stable. We then test whether the hydrodynamic equations could be used, in this domain, as a
semi-quantitative description. We find that the restabilization phenomenon is indeed observed
in the hydrodynamic equations, although the predicted location of the transition line between
stable and unstable motion does not match quantitatively with a perturbative treatment of the
kinetic theory. We also show that there exist solitary wave solutions of the hydrodynamic
equations that resemble the travelling stripes of higher density observed in the agent-based
model. Finally, section 6 discusses the main conclusions and perspectives of the present work.
Some technical aspects related to the agent-based model and to the stability analysis of the
homogeneous motion are reported in appendix A and appendix B, respectively.
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3. Boltzmann approach and hydrodynamic equations

3.1. Description in terms of Boltzmann equation

One of the main goals of this work is to derive analytically from the microscopic dynamics,
within an appropriate approximation scheme, the equations governing the evolution of the
hydrodynamic fields, namely the density and velocity fields. A standard approach to obtain
these hydrodynamic equations is to write, as a first step, the Boltzmann equation describing
the evolution of the one-particle probability distribution in phase-space (i.e. the probability
that a particle is at a given point, with a given velocity), and then to derive hydrodynamic
equations by computing the first moments of the Boltzmann equation. Note, however, that
such a procedure often yields a hierarchy of equations, so that a closure assumption has to be
used.

Let us start by deriving the Boltzmann equation for the above model. This equation
relies on the standard assumption that the gas is diluted, meaning that the typical distance
	pp between particles is large compared to the interaction distance d0, that is H � 1. In
the present context, one also needs to assume that the ballistic distance 	bal is much larger
than d0, namely B � 1. It ensures that there is no memory effect from one collision to the
other. The Boltzmann equation governs the evolution of the distribution f (r, θ, t) that gives
the probability that a particle is at point r with a velocity along the direction defined by the
angle θ . On general grounds, this equation can be written as

∂f

∂t
(r, θ, t) + v0 e(θ) · ∇f (r, θ, t) = Idif[f ] + Icol[f, f ]. (6)

The different terms in the equation can be interpreted as follows. The second term on the lhs
corresponds to the ballistic motion of particles between two stochastic events (self-diffusion
or collision). On the rhs, the term Idif[f ] accounts for the self-diffusion events, and it reads

Idif[f ] = −λf (r, θ, t) + λ

∫ π

−π

dθ ′
∫ ∞

−∞
dη p0(η)

∞∑
m=−∞

δ(θ ′ + η − θ + 2mπ)f (r, θ ′, t). (7)

The sum of δ-distributions accounts for the periodicity of angles. Finally, the term Icol[f, f ]
describes the effects of collisions. It can be derived in the following way. A collision between
two particles occurs if their relative distance becomes less than d0. Although the two particles
a priori play a symmetric role, it is convenient to choose one particle and to observe the
situation in the referential of this particle—say particle 1. In this frame, the velocity of particle
2 is ṽ2 = v0(e(θ2) − e(θ1)). Hence, in order to collide with particle 1 between t and t + dt ,
particle 2 has to lie at time t (in the referential of particle 1) in a rectangle of length |ṽ2| dt and of
width 2d0. Coming back to the laboratory frame, this rectangle deforms into a parallelogram,
but keeps the same surface, given by 2d0v0|e(θ2) − e(θ1)| dt . The collision term Icol[f, f ] is
then obtained from the bilinear functional Icol[g, h]:

Icol[g, h] = −2d0v0g(r, θ, t)

∫ π

−π

dθ ′|e(θ ′) − e(θ)|h(r, θ ′, t)

+ 2d0v0

∫ π

−π

dθ1

∫ π

−π

dθ2

∫ ∞

−∞
dη p(η)|e(θ2) − e(θ1)|

× g(r, θ1, t)h(r, θ2, t)

∞∑
m=−∞

δ(θ + η − θ + 2mπ), (8)

with again the notation θ = arg(eiθ1 + eiθ2), and where g and h are arbitrary phase-space
distributions.
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It is straightforward to check that the uniform one-particle distribution f0(r, θ, t) =
ρ0/2π , associated with a uniform density of particles ρ0, is a stationary solution of the
Boltzmann equation, for any values of the noise parameters σ and σ0, since each term in
equation (6) vanishes independently. If a transition to a state with collective motion occurs,
another distribution should be a steady-state solution of the Boltzmann equation. Yet, finding
this non-trivial distribution through non-perturbative analytical method is a hard task. One
could turn to numerical approaches, but we would rather like to obtain analytical results, at
least in some specific regime. We thus use an alternative approach in the following, which
consists in deriving hydrodynamic equations for the density and velocity fields from the
Boltzmann equation, in the limit of small hydrodynamic velocity. A stability analysis can
then be performed on these hydrodynamic equations in order to check the onset of collective
motion.

3.2. Derivation of the hydrodynamic equations

3.2.1. Hydrodynamic fields and continuity equation. The hydrodynamic fields are on the
one hand the density field:

ρ(r, t) =
∫ π

−π

dθ f (r, θ, t), (9)

and on the other hand the velocity field:

u(r, t) = v0

ρ(r, t)

∫ π

−π

dθ f (r, θ, t) e(θ). (10)

The equations governing the evolution of these hydrodynamic fields are derived by taking the
successive moments of the Boltzmann equation. A simple integration of equation (6) over θ

directly leads the evolution equation for ρ(r, t):

∂ρ

∂t
+ ∇ · (ρu) = 0, (11)

which is nothing but the usual continuity equation accounting for the conservation of the
number of particles.

3.2.2. Angular Fourier expansion of the phase-space distribution. The derivation of the
evolution equation for the velocity field is actually much more complicated, and one has to
resort to approximation schemes. As f (r, θ, t) is a periodic function of θ , it is convenient to
work with its Fourier series expansion, defined as

f̂ k(r, t) =
∫ π

−π

dθ f (r, θ, t) eikθ . (12)

Conversely, f (r, θ, t) can be expressed as a function of the Fourier coefficients through the
relation

f (r, θ, t) = 1

2π

∞∑
k=−∞

f̂ k(r, t) e−ikθ . (13)

In this framework, the uniform distribution f0(r, θ, t) = (2π)−1ρ0 corresponds to f̂ k(r, t) =
(2π)−1ρ0δk,0.

Let us use as a basis of the plane the two orthogonal vectors e1 = e(0) and e2 = e(π/2).
The components of e(θ) in this basis are obviously e1(θ) = cos θ and e2(θ) = sin θ . In order

6
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to obtain an evolution equation for the velocity field, we multiply equation (6) by e(θ) and
integrate over θ ; one gets in tensorial notations (j = 1, 2)

∂

∂t

∫ π

−π

dθ ej (θ)f (r, θ, t) + v0

2∑
l=1

∂

∂xl

∫ π

−π

dθ ej (θ)el(θ)f (r, θ, t)

=
∫ π

−π

dθ ej (θ)(Idif[f ] + Icol[f, f ]). (14)

To proceed further, it is convenient to identify complex numbers with two-dimensional vectors,
in such a way that e(θ) is mapped onto eiθ . Then, in the same way, v0f̂ 1(r, t) is associated
with the momentum field w(r, t) = ρ(r, t) u(r, t). Hence, we wish to rewrite equation (14)
in such complex notations. For later use, we shall write it in a slightly more general form,
replacing eiθ with eikθ (k being an integer):

∂

∂t

∫ π

−π

dθ eikθf (r, θ, t) + v0

2∑
	=1

∂

∂xl

∫ π

−π

dθ eikθ el(θ)f (r, θ, t)

=
∫ π

−π

dθ eikθ (Idif[f ] + Icol[f, f ]). (15)

Equation (14) is recovered for k = 1, up to the mapping between complex numbers and
two-dimensional vectors. The first term on the lhs is simply ∂f̂ k/∂t . The rhs of equation (15)
is computed by inserting the Fourier series expansion (13) into equations (7) and (8). After a
rather straightforward calculation, one finds∫ π

−π

dθ eikθ (Idif[f ] + Icol[f ]) = −λ
(
1 − e−k2σ 2

0 /2)f̂ k(r, t)

− 2

π
d0v0

∞∑
q=−∞

(
Iq − e−k2σ 2/2Iq−k/2

)
f̂ q(r, t)f̂ k−q(r, t), (16)

where the coefficients Iq are defined as

Iq =
∫ π

−π

dθ

∣∣∣∣sin
θ

2

∣∣∣∣ cos qθ. (17)

From this definition, it is obvious that I−q = Iq . For integer q, Iq is given by

Iq = 4

1 − 4q2
, (18)

while for the half-integer q = m + 1
2 (m integer) one has

I 1
2

= I− 1
2

= 2, (19)

Im+ 1
2

= 1

m(m + 1)
[(−1)m(2m + 1) − 1], m �= −1, 0. (20)

The second term on the lhs of equation (15) can be evaluated as follows. For l = 1, 2 and k
integer, let us define the complex quantity Q

(k)
l (r, t) as

Q
(k)
l (r, t) =

∫ π

−π

dθ eikθel (θ)f (r, θ, t). (21)

The following relations are then easily obtained:

Q
(k)
1 (r, t) = 1

2
[f̂ k+1(r, t) + f̂ k−1(r, t)], (22)

Q
(k)
2 (r, t) = 1

2i
[f̂ k+1(r, t) − f̂ k−1(r, t)]. (23)

7
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3.2.3. Velocity field equation in the small velocity regime. Up to now, the calculations
made are exact, apart from the approximations underlying the Boltzmann equation. As
already mentioned, the Fourier coefficient f̂ 0(r, t) is nothing but the density field ρ(r, t), and
f̂ 1(r, t) can be mapped onto the momentum field w(r, t) through the identification of complex
numbers with two-dimensional vectors. A similar mapping also holds for f̂ −1(r, t), which is
the complex conjugate of f̂ 1(r, t). In contrast, Fourier coefficient f̂ k(r, t) with |k| > 1 cannot
be mapped onto the hydrodynamic fields. As it turns out that such coefficients appear both
in the expression of Q

(k)
l (r, t) and on the rhs of equation (15), an approximation scheme has

to be found in order to obtain from equation (15) a closed hydrodynamic equation, involving
only the fields ρ(r, t) and u(r, t).

In the following, we assume that the distribution f (r, θ, t) is close to an isotropic
distribution, namely it depends only slightly on θ . This amounts to assuming that the
hydrodynamic velocity is much smaller than the velocity of individual particles. In terms of
Fourier coefficients, the hydrodynamic velocity is given by ‖u(r, t)‖ = v0|f̂ 1(r, t)|/ρ(r, t).
We introduce a small parameter ε such that ‖u(r, t)‖ = O(ε). For instance, ε can be chosen
as u/v0, where u is the spatial average of ‖u(r, t)‖ at some initial time t = t0. Then the key
assumption we use to build an approximation scheme is

f̂ k(r, t) = O(ε|k|). (24)

Such a scaling ansatz is consistent with the property f̂ −k(r, t) = f̂ k(r, t)
∗, with the scaling

properties of f̂ 0(r, t) and f̂ 1(r, t), and with equation (16). We shall identify more precisely
in section 4.1.2 the validity domain of this scaling ansatz, and thus of the hydrodynamic
equations we will derive from it.

Using the above scaling ansatz, the sum on the rhs of equation (16), for k = 1, can be
truncated, only keeping terms with q = 0, 1 or 2, that are at most of order ε3, while discarding
the other terms, being of higher order in ε. Gathering all terms, one obtains the following
equation for the evolution of f̂ 1 (we drop the explicit dependence upon r and t to simplify the
notations):

∂f̂ 1

∂t
+

v0

2

∂

∂x1
(f̂ 2 + ρ) +

v0

2i

∂

∂x2
(f̂ 2 − ρ)= −

[
λ
(
1 − e−σ 2

0 /2) +
8

π
d0v0

(
2

3
− e−σ 2/2

)
ρ

]
f̂ 1

− 8

π
d0v0

(
e−σ 2/2 − 2

5

)
f̂ ∗

1f̂ 2. (25)

Hence, the resulting equation involves f̂ 0 = ρ, f̂ 1 and f̂ 2. Accordingly, it turns out that one
needs to find a closure relation to express f̂ 2 as a function of f̂ 0 and f̂ 1 (or, equivalently,
in terms of ρ and u). Such a relation is given by the evolution equation for f̂ 2, that is,
equation (15) with k = 2. From equation (16), one sees that Fourier coefficients f̂ q with
|q| > 2 are a priori involved, but they can actually be discarded as being of order higher than
ε2, whereas f̂ 2 = O(ε2). Similarly, the quantity Q

(2)
l can be expressed as a function of f̂ 1

and f̂ 3, and here again, f̂ 3 can be neglected. One thus ends up with the following equation
for f̂ 2:

∂f̂ 2

∂t
+

v0

2

∂f̂ 1

∂x1
− v0

2i

∂f̂ 1

∂x2
= −

[
λ
(
1 − e−2σ 2

0
)

+
16

3π
d0v0

(
7

5
+ e−2σ 2

)
ρ

]
f̂ 2

+
8

π
d0v0

(
1

3
+ e−2σ 2

)
f̂ 2

1. (26)

Within our hydrodynamic description, it is also natural to assume that the phase-space
probability density f (r, θ, t), or equivalently its Fourier coefficients f̂ k(r, t), varies
significantly only over time and length scales that are much larger than the microscopic

8
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ones. Relevant microscopic time scales are the typical collision time τcol = 1/(ρd0v0) and the
typical ballistic time τbal = 1/λ between self-diffusion events. It is thus legitimate to neglect
the term ∂f̂ 2/∂t in equation (26), as it is much smaller than f̂ 2/τcol and f̂ 2/τbal. In contrast,
the terms containing the spatial derivatives have to be retained, as they involve f̂ 1 which is
much larger than f̂ 2.

From equation (26)—without the time-derivative term—one can express f̂ 2 as a function
of ρ and f̂ 1. Then plugging this expression for f̂ 2 into equation (15), with k = 1, leads to a
closed hydrodynamic equation governing the evolution of f̂ 1, and involving only f̂ 1 and ρ.
Mapping back complex numbers onto two-dimensional vectors, v0f̂ 1 can be identified with
the ‘momentum’ field w = ρu, and one obtains the following hydrodynamic equation:

∂w

∂t
+ γ (w · ∇)w = −v2

0

2
∇ρ +

κ

2
∇w2 + (μ − ξw2)w + ν∇2w

− κ(∇ · w)w + 2ν ′∇ρ · M − ν ′(∇ · w)∇ρ, (27)

with ν ′ = ∂ν/∂ρ and where M = 1
2 (∇w + ∇wT) is the symmetric part of the momentum

gradient tensor. The different coefficients appearing in this equation are given by

ν = v2
0

4

[
λ
(
1 − e−2σ 2

0
)

+
16

3π
d0v0ρ

(
7

5
+ e−2σ 2

)]−1

, (28)

γ = 16νd0

πv0

(
16

15
+ 2 e−2σ 2 − e−σ 2/2

)
, (29)

κ = 16νd0

πv0

(
4

15
+ 2 e−2σ 2

+ e−σ 2/2

)
, (30)

μ = 8

π
d0v0ρ

(
e−σ 2/2 − 2

3

)
− λ

(
1 − e−σ 2

0 /2), (31)

ξ = 256νd2
0

π2v2
0

(
e−σ 2/2 − 2

5

) (
1

3
+ e−2σ 2

)
. (32)

Equation (27) may be considered as a generalization of the Navier–Stokes equation to a case
where on the one hand, the global momentum of the assembly of particles is not conserved by
the microscopic dynamics and on the other hand, the dynamics breaks the Galilean invariance.
This shows up in the appearance of new terms in the equation, as well as in the presence of the
coefficient γ , generically different from the Navier–Stokes value 1/ρ, in front of the (w · ∇)w

term. For instance, if λ � ρd0v0, γρ remains close to 0.6 for any value of σ .
The different terms on the rhs of equation (27) may be interpreted as follows. Neglecting

the density dependence of κ , the first two terms can be considered as a pressure gradient, where
the effective pressure Peff obeys the equation of state Peff = 1

2

(
v2

0ρ − κw2
)
. The third term

accounts for the local relaxation of the momentum field w, and this term plays an important
role in the onset of a collective behaviour, as we shall see in the following section (note
that ξ > 0 when μ > 0). The fourth term describes the viscous damping, like in the usual
Navier–Stokes equation. The parameter ν can thus be interpreted as a kinematic viscosity. It
decreases when ρ increases, but the ‘dynamic’ viscosity ρν increases with ρ. The fifth term
may be thought of as a nonlinear feedback on the momentum field of the compressibility of the
flow. Finally, the two last terms correspond to a coupling between the density and momentum
gradients.

It is also important to note that the above hydrodynamic equation (27) is consistent
with the phenomenological equation postulated by Toner and Tu on the basis of symmetry

9
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considerations [17]. Specifically, expanding the expression of w = ρu in that equation, we
find the same terms involving the velocity gradients as in [17]. But it turns out that the
term ∇(∇ ·w), which would be allowed from symmetry considerations, does not appear in the
present approach, that is, the coefficient in front of it vanishes. Note also that the term (u ·∇)2u

considered by Toner and Tu [17] does not appear here for being of higher order than the terms
retained in the expansion. Last, hydrodynamic equations which have been derived through the
kinetic approach are entirely deterministic, while Toner and Tu studied stochastic equations.
However, some additional terms also appear, like the coupling terms between density and
velocity gradients. Most importantly, the present approach provides a microscopic justification
to the hydrodynamic equation of motion and yields explicit expressions, as a function of the
microscopic parameters, for the different coefficients appearing in the equations (transport
coefficients).

4. Noise-density phase diagram from the hydrodynamic equations

4.1. Spatially homogeneous stationary solutions

4.1.1. Transition towards collective motion. Now that the hydrodynamic equations of motion
have been derived, it is natural to look for the different possible stationary solutions and to test
their stability. Let us first look for the spatially homogeneous stationary solutions. Dropping
all space and time derivatives, one ends up with the simple equation

(μ − ξw2)w = 0. (33)

Hence a trivial homogeneous stationary solution is w = 0 for all values of the parameters.
When μ > 0, a second solution appears, namely w = w1 = √

μ/ξ e, where e is a unit vector
pointing in an arbitrary direction. The stability against spatially homogeneous perturbations is
easily tested by assuming that the flow is homogeneous, but time-dependent in equation (27),
yielding

∂w

∂t
= (μ − ξw2)w. (34)

It follows that w = 0 is a stable solution when μ < 0, while it becomes unstable for μ > 0.
In the latter case, the emerging solution w = w1 is stable against homogeneous perturbations.
From the expression (31) of μ, we see that the sign of μ is related to a competition between
density and self-diffusion. When the self-diffusion probability λ is high, μ < 0 and there is
no flow. In contrast, when the density is high, μ > 0 and a spontaneous flow appears due
to the numerous interactions between particles. The value μ = 0 defines a transition line in
the phase diagram noise versus density: for given values σ and σ0 of the noises, the nonzero
solution w = w1 appears for a density ρ > ρt, where the threshold density ρt is given by

ρt = πλ
(
1 − e−σ 2

0 /2
)

8d0v0
(
e−σ 2/2 − 2

3

) . (35)

In terms of the dimensionless parameter (or reduced density)

p = B

H 2
= d0	bal

	2
pp

= ρd0v0

λ
, (36)

the threshold is expressed as

pt = π
(
1 − e−σ 2

0 /2
)

8
(
e−σ 2/2 − 2

3

) . (37)
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Figure 1. (a) Phase diagram of the model in the plane (p, σ ), with p = ρv0d0/λ. A transition
line (full line: σ0 = σ ; dashed line: σ0 = 1) indicates the linear instability threshold of the state
u = |u| = 0. (b) Hydrodynamic velocity u in the homogeneous state for σ = σ0 = 0.6, computed
numerically from the Boltzmann equation (full line) and analytically from the hydrodynamic
equations (dashed line). Inset: same data on logarithmic scales (dots: slope 1/2).

This last result is interesting, as it shows that the threshold pt, which could a priori depend on
the three dimensionless numbers σ , σ0 and B, actually does not depend on B. The transition
line is plotted in figure 1(a) for the two cases σ0 = σ and σ0 = 1. Instead of considering the
transition as a function of the density, one may also look for the transition by varying the noises
at a given fixed density. If the two noise intensities σ0 and σ are equal, the instability of w = 0
occurs for any (non-zero) density, and the threshold noise σt behaves in the low density limit
p → 0 as σt ∼ p1/2. This nontrivial prediction can be verified in direct numerical simulations
(see below). In contrast, when σ0 is kept fixed while varying σ , no transition occurs as a
function of σ if the reduced density is lower than a limit p0

t given by

p0
t = 3π

8

(
1 − e−σ 2

0 /2). (38)

Finally, in the opposite limit of high density, the threshold noise σt saturates to a value
σ∞

t = (
2 ln 3

2

)1/2 ≈ 0.90.

4.1.2. Validity domain of the hydrodynamic equations. The hydrodynamic equations rely
on the scaling ansatz (24). In order to verify a posteriori the validity of the hydrodynamic
equations, we compare the stationary homogeneous solutions with non-zero velocity obtained
from the hydrodynamic equations to that numerically computed from the Boltzmann equation.
The hydrodynamic velocity u, computed as u = u1 ≡ ρ−1√μ/ξ , is plotted in figure 1(b) as a
function of the reduced density p. Note that u/v0 is a function of the dimensionless numbers
p, σ and σ0 only. As expected, the velocity u computed from the hydrodynamic equation
matches perfectly, in the small velocity regime (i.e. close to the transition line), the numerical
data from the Boltzmann equation. However, it turns out that even quite far from the transition,
when u becomes of the order of v0, the value u1 computed from the hydrodynamic equation
remains a good estimate of the value obtained from the Boltzmann equation. In particular, it
is interesting to note that u1 also saturates at large ρ to a finite value u∞

1 (σ ) < 1, given by

u∞
1 (σ ) = v0

[
2
(
e−σ 2/2 − 2

3

)(
7

15 + 1
3 e−2σ 2)(

e−σ 2/2 − 2
5

)(
1
3 + e−2σ 2

)
] 1

2

(39)
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Figure 2. Test of the scaling ansatz f̂ k = O(ε|k|). (a) gk = f̂ st
k /ρ versus k, for σ = σ0 = 0.6

and different values of the reduced density p, close to the transition density (pt = 0.3837); an
exponential decay is observed. (b) gk/g

k
1 as a function of k, showing that for a given k, gk is

essentially proportional to gk
1 when the density is varied (λ = 0.5, d0 = 0.5, v0 = 1). Inset: zoom

on the small k region.

(see figure 1(b)). Hence, even beyond their domain of validity, which is restricted to small
values of the hydrodynamic velocity, the hydrodynamic equations we have derived yield a
rather good approximation of the exact dynamics. Specifically, they fulfil the condition that the
hydrodynamic velocity should remain smaller than the individual velocity v0 of the particles,
although this result was not a priori obvious given the approximations made.

To further test the validity of the hydrodynamic equations, we have also checked explicitly,
from a numerical calculation, that the scaling ansatz (24) is correct. Specifically, we computed
from a numerical integration the stationary and spatially homogeneous solution f̂ st

k of the
Boltzmann equation. In order to work with dimensionless quantities, we plot in figure 2(a)
the quantities gk = f̂ st

k

/
ρ (instead of f̂ st

k ) as a function of k. We observe that gk decays almost
exponentially with k, as soon as k � 4. To test the scaling ansatz, we first reformulate it
in a more specific way. The ansatz is obeyed if there exists for all k a constant ck such that
gk ≈ ckg

k
1 in a parameter regime where g1 � 1. We thus plot on figure 2(b) the ratio gk

/
gk

1 for
different values of the density, close to the transition, and we observe a reasonable collapse of
the data. Let us, however, emphasize that a strict collapse of the data is not necessary in order
to apply the approximation scheme used in the derivation of the hydrodynamic equations. The
essential requirement is that the quantities gk with k > 2 could be neglected. As the ratio
gk

/
gk

1 decays rapidly with k, neglecting terms with k > 2 is a safe approximation.

4.2. Stability against inhomogeneous perturbations of the homogeneous stationary solutions

4.2.1. Evolution equation for the perturbations. We have shown that above a threshold
density ρt, or equivalently below a threshold noise σt, the solution with zero velocity becomes
unstable, and a stable solution with finite velocity emerges. Yet, only the stability with respect
to homogeneous perturbations (i.e. with infinite wavelength) has been tested up to now. Hence
this does not ensure that the finite velocity solution is really stable, as it may be destabilized by
finite wavelength perturbations. We now check this issue, by introducing small perturbations
around the homogeneous stationary solutions ρ0 and w0, namely

ρ(r, t) = ρ0 + δρ(r, t), w(r, t) = w0 + δw(r, t). (40)

Note that w0 may either be equal to zero or to the nonzero solution w1. Plugging these
expressions into the hydrodynamic equations (11) and (27), we can expand the resulting
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equations to the first order in the perturbation fields δρ(r, t) and δw(r, t), also taking into
account the density dependence of the different coefficients. This yields the following
linearized equations:

∂

∂t
δρ + ∇ · δw = 0, (41)

∂

∂t
δw + γ (w0 · ∇)δw = −v2

0

2
∇δρ + κ∇(w0 · δw)

+
[(

μ′ − ξ ′w2
0

)
δρ − 2ξw0 · δw − κ∇ · δw

]
w0

+
(
μ − ξw2

0

)
δw + ν∇2δw, (42)

where μ′ and ξ ′ are shorthand notations for ∂μ/∂ρ and ∂ξ/∂ρ. Note that ∂μ/∂ρ is actually a
constant, i.e. it is independent of ρ. Then we make the following ansatz:

δρ(r, t) = δρ0 est+iq·r, δw(r, t) = δw0 est+iq·r, (43)

where δw0 is a vector (with real components), and δρ0 is a complex amplitude that takes into
account a possible phase shift between density and momentum perturbation fields. Both ‖δw0‖
and |δρ0| are assumed to be small. The wavenumber q is assumed to have real components,
whereas the growth rate s is a priori complex. In addition, q is considered to be given, and one
looks for the dispersion relation s(q). If the real part �[s(q)] > 0, the mode with wavenumber
q is unstable. Then equations (41) and (42) become:

sδρ0 + iq · δw0 = 0, (44)[
s + γ (w0 · iq) − (

μ − ξw2
0

)
+ νq2]δw0 = − 1

2

(
v2

0δρ0 − 2κw0 · δw0
)
iq

+
[(

μ′ − ξ ′w2
0

)
δρ0 − (2ξw0 + κiq) · δw0

]
w0. (45)

Note that, due to linearity, the above equations can be re-expressed as a function of the ratio
of amplitudes δw0/δρ0.

4.2.2. Stability of the zero-velocity solution. Let us first check the stability against
inhomogeneous perturbations of the solution w0 = 0, which is known to be stable against
homogeneous perturbations in the low density phase ρ < ρt (corresponding to μ < 0). In this
case, equation (45) simplifies to

(s + νq2 − μ)δw0 = − i

2
v2

0δρ0q. (46)

Thus δw0 is along the same direction as q. Writing q = q e and δw0 = δw0 e, where e is an
arbitrary unit vector, one can eliminate the ratio δw0/δρ0 from equation (44), yielding

s2 + (νq2 − μ)s +
v2

0

2
q2 = 0. (47)

The discriminant of this second-order polynomial equation reads (note that μ < 0)

� = (|μ| + νq2)2 − 2v2
0q

2. (48)

If � � 0, the roots are real, and one finds for the largest one s+:

s+ = 1
2

[−(|μ| + νq2) +
√

(|μ| + νq2)2 − 2v2
0q

2
]

< 0. (49)

In the opposite case � < 0, the roots s± are complex conjugates, and their real part is given
by

�[s±] = − 1
2 (|μ| + νq2) < 0. (50)

As a consequence, the homogeneous fields w0 = 0 is stable with respect to finite wavelength
perturbations in the region ρ < ρt.
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4.2.3. Stability of homogeneous collective motion. We now turn to the stability analysis
of the stationary homogeneous flow w0 = w1, obtained for p > pt. For the hydrodynamic
equations to be valid, we restrict our study to values of p very close to pt, with p > pt.
One could a priori consider vectors q and δw0 that make arbitrary angles with respect to
w1. However, it can be shown (see appendix B) that only some specific angles are allowed.
Further, for all allowed perturbation modes such that q and δw0 are not along the direction of
w1, the real part of the growth rate s is negative, so that these modes are stable (appendix B).
The only instability that appears is for longitudinal perturbations, such that q, δw0 and w1 all
have the same direction. We thus focus on this specific case in the following.

Considering a longitudinal perturbation, we write w1 = w1e, q = qe and δw0 = δw0e,
where e is a unit vector. Under these assumptions, equations (44) and (45) become

sδρ0 + iqδw0 = 0, (51)

(s + γ iqw1 + νq2)δw0 = − iq

2

(
v2

0δρ0 − 2κw1δw0
)

+ w1
[(

μ′ − ξ ′w2
1

)
δρ0 − (2ξw1 + iqκ)δw0

]
, (52)

where we also take into account that μ − ξw2
1 = 0. From equation (51), one gets

δw0/δρ0 = −s/iq, which we report in equation (52). This yields a polynomial of second
degree in s:

s2 + s[(νq2 + 2μ) + iqγw1] +

[
q2v2

0

2
+ iqw1

(
μ′ − ξ ′w2

1

)] = 0, (53)

from which two solutions s± can be obtained. Denoting as s+ the solution with the largest real
part, we find

�[s+] = − 1
2 (νq2 + 2μ) +

√
1
8

(
J1 +

√
J 2

1 + J 2
2

)
, (54)

with

J1 = (νq2 + 2μ)2 − q2 (
γ 2w2

1 + 2v2
0

)
J2 = 2w1q

[
γ (νq2 + 2μ) − 2μ′ + 2ξ ′w2

1

]
.

To deal with this complicated expression, we first plot �[s+] as a function of q for some specific
values of the parameters (see figure 3(a)). Near the threshold pt of collective motion, there
exists a threshold value qi such that �[s+] is positive for q < qi and negative for q > qi . Hence
the homogeneous flow turns out to be unstable with respect to long wavelength perturbations.

This result is confirmed by a small q expansion of equation (54). Expanding �[s+] up to
the second non-trivial order in q, that is to order q4 since only even powers of iq appear in the
expansion of the real part of s+, we get4

�[s+] = μ′2

8ξμ2
q2 − 5μ′4

128ξ 2μ5
q4 + O(q6). (55)

The positivity of the coefficient of the q2 term confirms that, close to the transition line, long
wavelength modes are unstable. Note that the expansion (55) is consistent as long as the

4 To simplify the resulting expressions, we approximate the coefficients of the expansion in q by their leading order
in 1/μ, as μ is small close to the transition line. The full expression of the coefficient s2 of the q2 term reads

s2 = 1

8

[
1

ξ

(
μ′

μ
− ξ ′

ξ
− γ

)2

− γ 2

ξ
− 2v2

0

μ

]
.

This expression will be used in figure 5 to compare with numerical results.
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Figure 3. Longitudinal instability. (a) �[s+]/λ versus q for p = 0.22 (full line), 0.30 (dashed)
and p = 0.4 (dot-dashed), and σ = σ0 = 0.5 (pt = 0.2138). (b) (qiBd0) versus (p − pt) in
logarithmic scales. The dashed line indicates the scaling qi ∝ (p − pt)

1/4.

fourth-order term remains small with respect to the second-order one, yielding the condition
q � q∗ which defines the wavenumber q∗:

q∗ = d−1
0 B−1 (p − pt)

3
2 �(p). (56)

The function �(p) goes to a constant value for p → 0, and �(p) ∼ p−1/2 for p → ∞. The
wave vector q∗ defines the region where the first term of the expansion of �[s+] is dominant.

Interestingly, we observe that other wavenumbers characterizing �[s+] have a different
scaling with p−pt, the deviation from the threshold. For instance, it can be shown analytically
that the wavenumber qi, defined by �[s+] = 0, scales as qi ∼ w

1/2
1 ∼ (p−pt)

1/4, as illustrated
in figure 3(b). The wavenumber qi delimitates the domain of unstable modes. Another example
is given by the wavenumber qm that maximizes �[s+] and thus corresponds to the most unstable
modes: qm is found to scale as qm ∼ w1 ∼ (p−pt)

1/2. The existence of these different scaling
regimes is an illustration of the complexity of the dynamics close to the transition line.

Finally, we emphasize that the perturbations that destabilize the homogeneous collective
motion (that is, the long-range order) are different from the ones that destabilize long-range
order in the XY-model, an equilibrium model with essentially the same symmetries as in
the present model. In our model, motion is destabilized by longitudinal waves, while in the
XY-model, long-range order is destabilized by spin-waves, that is by a small change in the
spin direction from one spin to the neighbouring ones.

4.3. Comparison with the phase diagram of the agent-based model

4.3.1. Numerics and parameters. All simulations are performed using models defined on
a square domain, with periodic conditions on both boundaries. The initial conditions always
consist of randomly dispersed particles, with a uniformly chosen random speed direction.
Then all measurements are performed after a sufficiently long time so that a stationary state is
reached.

In the above framework of the Boltzmann equation, we considered diluted systems with
small correlations between particles, which is expressed in terms of the dimensionless number
H and B as

H � 1, B � 1. (57)

In the numerical agent-based model, we do not have access to very large values of H and B,
due to simulation constraints. However, to be as consistent as possible with the kinetic theory
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Table 1. Physical parameters of agent-based simulations; set I corresponds to the values used in
[15]. Parameters are chosen as a multiple or sub-multiple of 2; σmax

0 = π/
√

3 corresponds to the
same variance as a uniform noise on [−π;π ].

Set of
parameters σ0 d0 v0 λ ρ p B

I σ 1 2−1 1 [2−7; 22] [2−6; 2] 2−1

II σ 1 2−1 2−3 [2−9; 2−4] [2−7; 2−2] 22

III σ 1 2−1 2−4 [2−10; 2−4] [2−7; 2−1] 23

IV σ 1 2−1 2−5 [2−11; 2−4] [2−7; 1] 24

V σ 1 1 2−5 [2−10; 2−6] [2−7; 2−3] 25

VI σ 2−1 2−1 2−5 [2−11; 2−5] [2−8; 2−2] 25

VII σ 2−2 2−1 2−5 [2−11; 2−4] [2−9; 2−2] 26

VIII σ max
0 2−2 2−1 2−5 [2−12; 2−5] [2−10; 2−2] 26

approach, we mainly explored a parameter range such that H � 4 and B � 4. Among the
three dependent dimensionless numbers B, H and p, we decided to keep B to characterize the
set of parameters, and p as the control parameter.

Throughout the study, we fix �t = 1. We defined some sets of parameters (d0, v0, λ)

and, for each of them, we studied the behaviour of the system in the parameter space (ρ, η).
To make the comparison between analytical and numerical results easier, we characterize the
noise amplitude by its rms-value σ (or equivalently its variance σ 2). For a uniform noise on
the interval [−ηπ, ηπ ], we have σ = η · π/

√
3. The self-diffusion noise is kept equal to the

collision noise (σ0 = σ ), except for one set of parameters in which the angle of diffusion η0ξ
t
j

is chosen over the whole circle. We call its rms-value σ max
0 . All the parameter values are

summarized in table 1.

4.3.2. Transition line. When the noise amplitudes for collision and self-diffusion are equal,
the general aspect of the phase diagram is the same for both the kinetic theory and the agent-
based model (figure 4(a)). We have drawn the transition line for different sets of parameters
in figure 4(b). All curves seem to be bounded between configurations I (B = 0.5) and II
(B = 4).

Looking at the influence of the different parameters, we can make the following
observations. First, there are small variations as the self-diffusion probability λ changes
with a factor of 8 from configurations II–IV (figure 4(b)). When the dimensionless parameter
B is kept constant (sets V and VI), the transition points corresponding to the same value of
p are equal within the error bars. Apart from set I for which B < 1, it turns out that the
measured values of σt differ by less than 15% for any given p, while B is varied by a factor of
16 between set II (B = 4) and set VII (B = 64). However, we are not able to conclude that
the curves merge into a single master curve. In particular, the observed evolution of σt when
increasing B at fixed p is not monotonous (figure 4(b)).

In the low p region, the transition noise varies as a power law with p, σ ∝ pβ when
p → 0. We have measured the exponent β for the largest dimensionless number B (B = 64,
set VII), yielding β = 0.46 ± 0.04 (figure 4(c)). This value is compatible with a square-
root behaviour as found analytically in the binary collision model (figure 1). Quantitatively,
the transition lines computed from the kinetic theory and the ones which we measure in
the agent-based model are relatively close to each other; their largest relative difference is
about 30%.
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Figure 4. Phase diagram of agent-based models. (a) Overview of the phase diagram. The
continuous line is the transition line of the continuous model given in equation (37); data for
symbols ◦ are obtained with the parameter set I. (b) Diagrams for all configurations with the
self-diffusion noise σ0 = σ (plot in log–log scales). (c) Scaling of the transition line at small p
with the set of parameters VII (B = 64) in log–log scales. The continuous line is the transition
line (37) obtained from the kinetic theory. The dashed line is a square-root fit of the numerical
results. (d) Model with a constant and maximum noise amplitude for self-diffusion in log–log
scales (set VIII, B = 64). The continuous line corresponds to a fit of the numerical points with the
law σt = α(p − p0

t )1/2. The dashed line is a fit with a power law β = 0.57 (see table 1 for values
of the other parameters).

4.3.3. Maximal self-diffusion. When we set the amplitude of self-diffusion noise to its
maximum (η0 = 1 or σ0 = π/

√
3), the behaviour of the model remains qualitatively similar

to the case σ = σ0 that we studied above, with only a few quantitative differences. The
transition line is shifted to a lower noise amplitude: σt differs by two orders of magnitude
between the two comparable parameter sets VII and VIII. Fitting the two curves by a power
law, the exponents are significantly different: β ≈ 0.46 for set VII (σ = σ0), while β ≈ 0.57
for set VIII

(
σ0 = σ max

0

)
. One possible explanation for such a difference would be that, as

in the hydrodynamic equations, there exists a threshold p0
t below which no collective motion

occurs, whatever the noise amplitude σ . A fit with the function p = α
√

p − p0
t gives a value

p0
t = 0.001 33 (figure 4(d)), much smaller than the theoretical value p0

t = 3π/8 ≈ 1.18.
Given the presently available data, we are not able to discriminate between the two fits and to
conclude on the existence of a non-zero threshold value p0

t . Trying to find a phase transition
for a very low value of p (p = 2−10), below the fitted value p0

t , we could hardly define a
threshold. However, it might be necessary to reach larger system sizes to detect a phase
transition in this regime.
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5. Beyond the strict validity domain of the hydrodynamic equations

In section 4, we concluded from a linear stability analysis that the homogeneous flow is unstable
with respect to long wavelength perturbations, in the validity domain of the hydrodynamic
equations, namely close to the transition line. When getting farther from the transition line,
previous theoretical approaches [18] suggest that the homogeneous motion should be stable.
To come to a conclusion in the present framework, it is thus necessary to come back to an
analysis of the Boltzmann equation. It is also natural to wonder whether the hydrodynamic
equations could yield, out of their strict validity domain, a qualitative description of the
phenomenology of the moving phase. We address these issues in the present section. In
particular, we find a restabilization of the homogeneous flow far from the transition line, as
well as solitary waves that we compare with the travelling stripes already reported in numerical
simulations of the agent-based model [14].

5.1. Stability analysis from the Boltzmann equation

In order to analyse the stability of the finite velocity solution beyond the validity domain of
the hydrodynamic equations, we come back to the Boltzmann equation, and we resort to a
semi-analytical treatment.

We start with a formal expansion of the phase-space distribution f (r, θ, t) around the
homogeneous stationary solution f0(θ):

f (r, θ, t) = f0(θ) + δf (r, θ, t), (58)

and we consider a perturbation of wave vector q of the form

δf (r, θ, t) = δρ0G(θ, q) est+iq·r, (59)

with
∫ π

−π
dθ G(θ, q) = 1. Assuming, as in section 4.2.3, that both q and the velocity

perturbation are along the same direction e as the collective velocity, the function G(θ, q)

satisfies the following linearized Boltzmann equation:

sG(θ, q) + iqv0 cos θ G(θ, q) = Idif[G] + Icol[G, f0] + Icol[f0,G]. (60)

Setting q = qe, we are interested in a small q expansion of equation (60), in order to compare
with the results of equation (55). We then expand s and G(θ, q) in the following way:

s = is1q + s2q
2 + O(q3), (61)

G(θ, q) = G0(θ) + iqG1(θ) + q2G2(θ) + O(q3), (62)

with the normalization conditions:∫ π

−π

dθ G0(θ) = 1,

∫ π

−π

dθ G1(θ) = 0,

∫ π

−π

dθ G2(θ) = 0. (63)

Then G0, G1 and G2 are solutions of the hierarchy of equations

Idif[G0] + Icol[G0, f0] + Icol[f0,G0] = 0, (64)

s1G0(θ) + v0 cos θG0(θ) = Idif[G1] + Icol[G1, f0] + Icol[f0,G1], (65)

−s1G1(θ) + s2G0(θ) − v0 cos θG1(θ) = Idif[G2] + Icol[G2, f0] + Icol[f0,G2]. (66)

Using the properties of Idif and Icol, namely∫ π

−π

dθ Idif[g] = 0,

∫ π

−π

dθ Icol[g, f0] =
∫ π

−π

dθ Icol[f0, g] = 0 (67)
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Figure 5. (a) Dependence of s2 on σ for p = 2.5 and σ0 = σ . For σ below a given threshold
σr, s2 becomes negative, indicating that the homogeneous state of motion is stable with respect to
long wavelength perturbations. In contrast, close to the transition line, this state is unstable since
s2 > 0. The vertical dashed line corresponds to the transition value σt. Inset: comparison, close
to σt, of s2 obtained numerically from the Boltzmann equation (full line) and analytically from the
hydrodynamic equations (dashed line), showing a good agreement. (b) Phase diagram indicating,
for σ = σ0, the three different regions: no motion (A), unstable homogeneous motion (B), stable
homogeneous motion (C). The full line has been obtained numerically from a stability analysis of
the Boltzmann equation. The dashed one is the transition line shown in figure 1(a).

for any function g, we obtain

s1 = −v0

∫ π

−π

dθ cos θG0(θ), (68)

s2 = v0

∫ π

−π

dθ cos θG1(θ). (69)

Hence the determination of G2 is not necessary to compute s2. We only need to compute the
hierarchy of functions up to G1. It is actually convenient to work in Fourier space, introducing
the Fourier series expansion Ĝ0,k and Ĝ1,k of G0(θ) and G1(θ), respectively. In terms of this
Fourier expansion, one finds s1 = −Ĝ0,k=1 and s2 = Ĝ1,k=1, assuming that G0(θ) and G1(θ)

are even functions.
The integral equations (64) and (65) can be solved numerically, once expressed in terms

of Fourier coefficients. To this purpose, we use the following Fourier expansion of the integral
operators Idif and Icol:∫ π

−π

dθ eikθ Idif[g] = −λ
(
1 − e−k2σ 2

0 /2)ĝk, (70)

∫ π

−π

dθ eikθ Icol[g, h] = 2d0v0

π

∞∑
q=−∞

(
e−k2σ 2/2Iq− k

2
− Iq

)
ĝk−q ĥq . (71)

Numerical results are reported in figure 5(a), where s2 is shown as a function of σ for
σ = σ0, all other parameters being kept fixed. Consistently with the results obtained from
the hydrodynamic equations, we observe that close to the transition line, s2 is positive and
diverging. But for smaller values of the noise amplitude σ , s2 becomes negative. Hence the
homogeneous state of motion becomes stable in this range with respect to long wavelength
perturbations.
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As summarized in figure 5(b), there are from the point of view of stability three regions in
the phase diagram (we focus here on the case σ = σ0). These three regions can be described
as follows:

A At low p or high σ , no collective motion occurs.
B For pt < p < pr, a homogeneous stationary solution with nonzero velocity exits, but
it is unstable under longitudinal compression modes.
C For p > pr, the homogeneous and stationary moving phase is linearly stable under
any small perturbation.

pr is defined as the value of the reduced density such that s2 = 0. Note that pr is not a
monotonous function of σ . In the B region, the system cannot converge to a homogeneous
stationary solution, and one thus expects the system to organize into more complicated spatio-
temporal structures, that we shall try to describe in section 5.3.

5.2. Restabilization of the homogeneous flow in the hydrodynamic equations

The above stability analysis from the Boltzmann equation shows that the homogeneous flow
becomes linearly stable when getting farther from the transition line pt. Although this region of
restabilization is, strictly speaking, out of the validity domain of the hydrodynamic equations,
it would be interesting to know whether these equations already contain, at a qualitative level
of description, the restabilization phenomenon.

One possible way to investigate this stability issue is to study the sign of the coefficient
s2 of the q2 term in the small q expansion of �[s+]. An equivalent procedure, that we follow
here, is to look for the domain of existence of the wavenumber qi (defined as �[s+] = 0 for
qi �= 0), when the control parameter p is increased at a given noise amplitude σ . In order to
achieve this task, we solve the equation �[s+] = 0, using expression (54). The solutions are
naturally expressed in terms of the variable q2

i . After some algebra, we find for the largest
solution

q2
i = μ

νv2
0

[
−γw2

1

(
μ′

μ
− ξ ′

ξ

)
− 2v2

0 + w1

(
μ′

μ
− ξ ′

ξ

) √
γ 2w2

1 + 2v2
0

]
, (72)

where the term
(

μ′
μ

− ξ ′
ξ

)
is positive. The expression on the right-hand side of equation (72)

is positive for p close enough to pt, and becomes negative for larger p (see figure 6(a)), in
which case a real solution qi does not exists. As a result, there exists a value pr of the control
parameter p such that qi is no longer defined. For p > pr, �[s+] remains negative for all values
of q (figure 3(a)), so that all perturbations are linearly stable. Using equations (28)–(32), we
can compute the restabilization line pr(σ ) and show that pr depends only on σ and σ0, but not
on B. We also find that pr(σ ) behaves for small noise amplitude as pr ∝ σ 1/2 (see figure 6(b)
and its inset).

Altogether, the hydrodynamic equations seem to lead to the correct phenomenology
even when used beyond their strict validity domain. Yet, the locations of the transition line
pr(σ ) predicted from the hydrodynamic equations on one side, and the one predicted from
a long wavelength perturbative treatment of the Boltzmann equation on the other side, are
quantitatively different, as illustrated in figures 5(b) and 6(b).

5.3. Inhomogeneous travelling solutions and solitary waves

For p slightly larger than pt, the homogeneous solutions w = 0 and w = w1 are unstable,
and one should look for the onset of spatio-temporal structures rather than purely stationary
states. In this respect, one may be guided by the observations made in numerical simulations
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Figure 6. Restabilization in the hydrodynamic framework. (a) (qiBd0)
2 such that �[s] = 0

versus p, same parameters as figure 3. (b) Phase diagram. The full line corresponds to the onset of
motion, σt. The dashed line is the transition between stable and unstable homogeneous flows, σr.
Inset: same as (b) in the log–log scale. Regions A: w = 0, B: w �= 0 and �[s] > 0 when q < qi ,
C: w �= 0 and �[s] < 0 for all q and for all direction of perturbation.

[14, 15], where ‘stripes’ of higher density moving over a low density background have been
reported. Such structures are rather similar to soliton solutions that have been observed in
many different physical contexts [21].

5.3.1. Stationary hydrodynamic equation in a moving frame. Let us now look for possible
soliton solutions of the hydrodynamic equations (11) and (27). To this aim, we assume for ρ

and w the following ‘propagative’ form, with propagation velocity c > 0, along an arbitrary
axis x of unit vector e:

ρ(r, t) = R(x − ct), w(r, t) = W(x − ct) e, (73)

with ζ = x−ct and W(ζ) > 0. Using equations (11), one finds the simple relation R′ = W ′/c,
leading to

R(ζ ) = 1

c
W(ζ ) + ρ∗, (74)

where ρ∗ is up to now an arbitrary constant density. In the following, we consider velocity
profiles that vanish for ζ → ±∞, so that ρ∗ = limζ→±∞ R(ζ ). Inserting this form in
equation (27), one can eliminate R(ζ ) and obtain the following ordinary differential equation
for W(ζ), also taking into account the density dependence of the transport coefficients5:

W ′′ = −(a0 − a1W − a2W
′)W ′ − b1W − b2W

2 − b3W
3. (75)

The different coefficients in equation (75) read

a0 =
(

c − v2
0

2c

)
(D1 + D2ρ

∗) (76)

a1 = γ̃ + D2

(
v2

0

2c2
− 1

)
(77)

a2 = D2

c(D1 + D2ρ∗)
(78)

5 We however neglect the density dependence of the ratio ν′/ν, as it would lead to terms of higher order than those
retained in our hydrodynamic description.
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b1 = μ′(ρ∗ − ρt)(D1 + D2ρ
∗) (79)

b2 = μ′

c
[D1 + D2(2ρ∗ − ρt)] (80)

b3 = μ′D2

c2
− ξ̃ (81)

with

D1 = 4λ

v2
0

(
1 − e−2σ 2

0
)

(82)

D2 = 64d0

3πv0

(
7

5
+ e−2σ 2

)
, (83)

and γ̃ = γ /ν, ξ̃ = ξ/ν. As often in the study of solitons [21], equation (75) may be
reinterpreted as the equation of motion of a fictive particle with position W at time ζ . Here,
this virtual particle has a unit mass, and moves in a potential

�(W) = b1

2
W 2 +

b2

3
W 3 +

b3

4
W 4, (84)

with a nonlinear friction force −(a0 −a1W −a2W
′)W ′. Depending on the sign of the effective

friction coefficient (a0 −a1W −a2W
′), the friction force may either dissipate or supply energy

to the particle. Note that this friction term breaks the symmetry ζ → −ζ , so that the resulting
momentum profile cannot be symmetric.

5.3.2. Numerical integration of the velocity and density profiles. To find a solution for
W(ζ), we integrate numerically equation (75) for given values of the parameters ai and bi.
The following constraints are imposed to the solution: W(ζ) should be positive for all values
of ζ and W(ζ) should go to 0 for ζ → ±∞. Hence for large values of |ζ |, W(ζ) should be
small and should satisfy, to a good accuracy, the linearized version of equation (75), namely

W ′′ + a0W
′ + b1W = 0. (85)

This equation has two exponential solutions W±(ζ ) = A± exp(r±ζ ), with

r± = 1

2

(
−a0 ±

√
a2

0 − 4b1

)
. (86)

For W(ζ) to be positive, one needs that the roots r± be real, which implies a2
0 − 4b1 � 0.

Further, for W(ζ) to vanish both for ζ → −∞ and ζ → +∞, one should have both an
increasing and a decreasing solution for equation (85), namely r+ > 0 and r− < 0, which
corresponds to b1 < 0.

The free parameters in equation (75) are c and ρ∗ (this point will be briefly discussed in
section 5.4, in connection with numerical results). The noises σ and σ0 are external control
parameters. The overall density ρ is computed afterwards from the profile R(ζ ). Assuming
that we are in the low noise region of parameter space σ < σ∞

t , then [exp(−σ 2/2)−2/3] > 0
and the condition b1 < 0 implies ρ∗ < ρt. In addition, as the trajectory of the particle starts
and ends at the same position W = 0 with zero velocity (W ′ = 0), its energy is the same,
which means that the friction force has to dissipate energy on some part of the trajectory and
to supply energy otherwise. Assuming a0 > 0 implies c − v2

0

/
(2c) > 0, that is c > v0/

√
2.

On the other hand, one intuitively expects c to be smaller than the microscopic velocity v0 of
the particles.
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Figure 7. (a) Velocity profile v(x, t) = V (ζ ), with ζ = x − ct , for ρ∗ = 0.06 and σ = σ0 = 0.31
(dashed line), 0.32 (dot-dashed line) and 0.33 (full line). Inset: propagation velocity c as a function
of σ . (b) Density profile ρ(x, t) = R(ζ ) for the same values of the parameters. Horizontal dotted
lines correspond to the density ρt for σ = σ0 = 0.31, 0.32 and 0.33 (bottom to top). Other
parameters: λ = 0.5, d0 = 0.5 and v0 = 1.

The numerical procedure we implement is the following. Choosing a given value for ρ∗

and for c, we start at ζ = ζ0 < 0 (|ζ0| � 1), with a small value W(ζ0) = W0 � 1, and with a
derivative W ′(ζ0) = r+W0. This choice of initial conditions ensures that we select a solution
with an exponential tail W(ζ) = A+ exp(r+ζ ) for ζ < ζ0. Then we integrate numerically
the differential equation for ζ > ζ0, until reaching large enough positive values of ζ . At this
stage, two behaviours may appear. One should first notice that for b1 < 0 (and at least if b3

does not take a large negative value) the effective potential �(W) has a local maximum in
W = 0 and a local minimum at a value W = Wmin. Then, if the dissipated energy is larger
than the injected energy, the particle ends up at Wmin for ζ → ∞, yielding a profile W(ζ) that
does not fulfil the condition required. In the opposite case, if energy injection dominates, the
particle crosses the local maximum at W = 0 and goes to negative values. It is only in the
marginal case where dissipation exactly compensates injection that the correct profile W(ζ)

is found. As friction is mainly controlled by the parameter c, we keep ρ∗ fixed and perform a
loop over the value of c in order to converge towards the marginal solution. Note, however,
that if b3 < 0, �(W) → −∞ when W → +∞, so that one should also take care that the
particle does not ‘escape’ to large positive values of W .

Using the above procedure, we obtain a family of profiles W(ζ) with three control
parameters, namely the ‘background’ density ρ∗ and the noises σ and σ0. In the following,
we restrict ourselves to the case σ0 = σ . The density profile is computed from the relation
R(ζ ) = ρ∗ + W(ζ)/c, and the velocity profile V (ζ ) is obtained from the momentum profile
W(ζ) through V (ζ ) = W(ζ)/R(ζ ). Examples of such velocity profiles are presented in
figure 7, for different values of σ and for a given value of ρ∗.

A remaining open issue is the stability of these solitary waves with respect to small
perturbations. A formal stability analysis like the one performed for the homogeneous state
of motion is a difficult task here, and we leave this question for future work.

5.4. Solitary waves in the agent-based model

We now compare the solitary waves computed in the hydrodynamic equations with the
travelling stripes observed in direct numerical simulations of the agent-based model (see
figure 8(a)). We focus again on the case σ0 = σ . The stripped structures are composed
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Figure 8. Solitons in the numerical model. (a) Instantaneous snapshot, the band is moving
southwest; lengths are scaled by d0. (b) Example of trajectory in the direction of the averaged
velocity. (c) Mean profiles along the direction of the main motion. We plot the reduced
dimensionless density Rr = (〈ρ(x − ct)〉 − ρsat)d2

0 c/v0 (dotted line) and the dimensionless
momentum Wr = 〈w(x − ct)〉d2

0 /v0 (plain line), both being time-averaged in the comoving frame
of the soliton. (d and e) Same data as (c) on semi-log scales, emphasizing the exponential decay.
The scales are identical on vertical axes, but different on abscissas. Parameter values are p = 2−3,
σ = 0.163, L = 4096; the other ones correspond to set VII in table 1.

of several localized, randomly spaced bands. They are not part of a regular pattern, nor
a wave train [15]. They are all moving along the direction of the main motion, although
during the transient period they can pass through each other with only few interactions. The
space between two bands is filled with particles moving independently (the hydrodynamic
momentum vanishes) and homogeneously (the density is constant). In analogy to the liquid–
gas coexistence, we denote this state as the saturating vapour.

We observe that the bands move at a constant speed, at least on the duration necessary to
travel through the system size (figure 8(b)). From the trajectories, we measured the velocity
c of the solitons. On the density profiles, we extracted the value ρsat of the density outside
the peak. If these structures are only propagative and if the continuity equation is valid at a
coarse-grained level in the agent-based model (which is expected from mass conservation),
the density and momentum profiles should be related by W = c(R − ρsat), as in section 5.3.
Plotting on figure 8(c) both the reduced density c(R−ρsat) and the momentum W , we observe
that both curves match perfectly, confirming the propagative nature of this stripped pattern.

These solitary waves are quite similar to the soliton we found in the hydrodynamic
equations (see section 5.3), with an exponential decay of the momentum profile on both sides
(figure 8(d–e)) in particular. However, the asymmetry of the profile is much more pronounced
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Figure 9. Solitons in the numerical model. (a) Density of saturated vapour for different p
(p = 2−2, ◦; 5−1, �; 2−3, �; 10−1, � and 2−4, ∗). Inset: finite size effects on soliton, p = 2−4,
L = 1024 (×) and L = 2048 (+). The dashed line marks the value of the global density (ρ = 2−5).
The dotted lines underline the threshold of the collective motion σt and of the homogeneous moving
population σr. (b) Speed of the solitons (same parameters). The other parameters are the ones of
set VII (see table 1).

than in the analytical model: the exponential decay is much steeper in front of the profile than
in the rear part.

We now study how the two main characteristics of the solitary waves, namely the velocity
c and the density ρsat, vary with the control parameters p and σ . Since we perform a numerical
study, we need to be aware of finite size effects. Plotting the density of saturating vapour
versus noise for a given density but for different sizes, we can make three observations (inset of
figure 9). First, the system size hardly changes ρsat provided that the noise amplitude remains
near the threshold. Moreover, at a lower noise amplitude, the density ρsat increases and
become sensitive to the system size. Lastly, there is a noise σr below which we cannot observe
solitons anymore (see also [15]) and the system becomes homogeneous at a coarse-grained
level. The result is qualitatively consistent with the restabilization of the homogeneous flow
described in sections 5.1 and 5.2.

The study of the very low noise amplitude region of the phase diagram is an ongoing
work. So we mainly focused in the present paper on the region relatively close to the transition
to collective motion. For different global densities, both ρsat and c fall onto the same curve
when plotted as a function of σ , as shown on figure 9(a) and (b). Therefore, once the noise
amplitude σ is given, the characteristics (c, ρsat) of the solitary waves are determined, and the
number of solitary waves is adjusted by the dynamics in order to match the global density of
the system.

This is a major difference with the solitary waves obtained from the hydrodynamic
equations in section 5.3. These solitary waves depend on two control parameters, namely the
noise amplitude σ and the density at infinity ρ∗. Hence there is a priori no way to determine
the number of solitons in a large but finite system with a given density. At a heuristic level,
we might guess that the solitary waves may be stable only for some specific values of ρ∗,
which would give a selection mechanism for the density ρsat. Such a mechanism would make
the connection between the analytical and numerical models clearer, but we presently have
no clue to confirm this tentative scenario. Obviously, further studies of the dynamics of the
solitary waves in the context of the hydrodynamic equations are needed.
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6. Conclusion

In summary, we have derived in this paper hydrodynamic equations for a model of self-
propelled particles with binary interactions, in the regime of low hydrodynamic velocity. We
also compared the results of the hydrodynamic description to the numerical simulations of a
standard agent-based model. In the analytical model, the homogeneous state with zero velocity
is a stationary solution for any values of the microscopic parameters (the noise amplitude and
the overall density), but this state is linearly unstable for a reduced density p greater than a
transition density pt(σ ), or equivalently, for a noise smaller than a transition value σt(p).

When the zero velocity solution is unstable, another homogeneous state, with a nonzero
hydrodynamic velocity, appears. This state is linearly stable with respect to spatially
homogeneous perturbations. However, close to the transition line σt(p), this state turns
out to be linearly unstable with respect to finite wavelength perturbations. As the validity of
the hydrodynamic equations is, strictly speaking, restricted to the vicinity of the transition line,
we also studied the stability of the homogeneous state of motion directly from the Boltzmann
equation. We found that, far enough from the transition line, the homogeneous motion becomes
linearly stable. Interestingly, this restabilization phenomenon is also qualitatively observed in
the hydrodynamic equations, although this regime is beyond their domain of validity. All these
results agree semi-quantitatively with the numerical simulations of the agent-based model.

When the homogeneous state of motion is unstable, more complex spatio-temporal
structures should appear. A candidate for such structure is the solitary waves we obtained
from the hydrodynamic equations. These solitary waves resemble the moving stripes observed
in the numerical agent-based model, apart from the asymmetry which is more pronounced in
the latter. A word of caution is however needed here, as on the one hand the solitary waves
have a finite amplitude, so that the hydrodynamic equations might not be valid, and more
importantly, their stability has not been tested yet. On the basis of the numerical simulations
of the agent-based model, it is however likely that these solitary waves should be stable at
least in a given region of the phase diagram.

As for future work, it would be interesting to investigate the stability of the solitary waves,
and to look for possible ‘multi-soliton’ solutions, in case the stability would be confirmed.
Specifically, it would be interesting to be able to determine the number of solitons, their
celerity and the background density as a function of the global density (for a finite volume)
and of the noise amplitude, if such a relation exists, as suggested by the numerical simulations
of the agent-based model.
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Appendix A. Agent-based model

A.1. Looking at the model further

The numerical system we looked at is very similar to the one defined by Vicsek et al [12]. This
is a very minimal model, easy to implement. In contrast, a real direct simulation would have
been coded following a molecular dynamics algorithm, which would have cost much more
cpu time than our Monte Carlo-like program. The numerical choice is also related to the fact
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that collective motion of self-propelled particles has been mainly studied in this framework
during the last 10 years [13–15, 22–30]. Thus we would like to take profit from this large
background and the knowledge of the system we already got.

To fully understand the results presented in this paper, we must explain the differences
between the numerical system we used and a direct simulation. In what we have done,
collisions are computed at a fixed time step. So every other collision that could have occurred
within �t is neglected. On the other hand, collisions can involve many individuals. Another
implication of the discrete time step is that decreasing the time step increases the collision
frequency. Then the noise does not act on the system with the same manner for two different
time steps. Hence, in its present formulation, the agent-based model is not a discretized version
of a continuous time model. To reach this goal, the noise amplitude should be renormalized
in some way with the time step.

The balance of the above different effects is difficult to imagine a priori. We do not
expect any quantitative matching between the theory we developed and the simulations we
presented. But we still want to test the robustness of the predictions made for large system
sizes.

We must also emphasize that some studies in the literature were aimed at giving an exact
continuous theory of Vicsek’s model [31–33]. Up to now, this difficult problem has been dealt
in the framework of perturbative theories at a first order in speed differences. In addition, the
role of the noise is not properly taken into account in these studies: it is either ignored [31] or
described by a phenomenological diffusive term [32]. Finally, the transport coefficients of the
hydrodynamic equation do not contain any dependence on the microscopic parameters of the
model.

A.2. Phase transition

As in usual versions of self-propelled particle systems, the behaviour of the system roughly
falls into two different categories. Either there is no collective motion: every particle moves
randomly without clear correlation with its neighbours, or there is a non-zero global velocity
in an arbitrary direction.

Since the analogy with magnetic systems is quite obvious, the habit is to consider the
equivalent averaged magnetization of our system, namely the global normalized velocity ϕt :

ϕt =
∥∥∥∥∥∥

1

Nv0

N∑
j=1

vt
j

∥∥∥∥∥∥ , (A.1)

considered as an order parameter. To determine the characteristics of the phase transition, we
study the statistical properties of the order parameter ϕt , considering its mean 〈ϕ〉, its variance
χ and its Binder cumulant K [34]:

〈ϕ〉 = 1

T

T∑
t=1

ϕt , (A.2)

χ = L2(〈ϕ2〉 − 〈ϕ〉2), (A.3)

K = 1 − 〈ϕ4〉
3〈ϕ2〉2

. (A.4)

The brackets 〈. . .〉 indicate an averaging over time. The duration of the simulation has to
be large to inhibit memory effects. Ideally, the correlation time for each set of parameters
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Figure A1. Phase transition in numerical simulation and finite size effects. We plotted (a) the
Binder cumulant K and (b) the averaged order parameter 〈ϕ〉 versus noise rms-value, for three
different sizes. In the inset, we show the histogram of the order parameter ϕ at the transition point
for a system size L = 1024. In (a), we emphasized the depth of the well �σ : approximation of
the errors in determining the transition point. Parameters are the ones of configuration III with
ρ = 1/16 or p = 1/2.

(ρ, σ, σ0, v0, d0, λ) should be computed from the auto-correlation function [35]. However,
this is a tantamount task6. Practically, in order to have a rough approximation of the correlation
time, we measured the transition time from the initial condition to the stationary state. Then
we performed averaging on time which are hundred times greater than that transition time.

For all sets of parameters I–VII (table 1), we observed that the system exhibits a phase
transition from a non-moving to a globally moving population when decreasing the noise
amplitude at a fixed density. At small enough size L, all statistical variables (〈ϕ〉, χ,K)

remain continuous, while a singular point appears when the system is larger than a typical size
Lt (see figure A1(a) and (b), as well as [14, 15]).

The main observations are the following: the order parameter curve exhibits a jump
(figure A1(b)), the variance is delta-peaked (not shown here), the Binder cumulant has a
minimum (figure A1(a)) which goes to larger negative values when the system size is increased
and the histogram of the order parameter is bimodal (see inset of figure A1(b)). All these sign
plead in favour of a first-order phase transition.

It is now well known that a finite size system exhibits a rounded transition, at equilibrium
[36, 37] or far from the equilibrium [38, 39]. The scaling laws are normally sufficient to detect
the order of the transition. In our case, the finite size scaling laws correspond to a continuous
transition below Lt [40, 41] and to a discontinuous transition above Lt [15].

To estimate the transition point, we measured the location where the Binder cumulant
minimum becomes negative. We neglected the finite size effects at higher size. We determined
the error bars on that location as the width of the well (see figure A1(a)).

Appendix B. Stability against arbitrary perturbations

In this appendix, we study within the framework of the hydrodynamic equations the stability
of the stationary homogeneous flow. Starting from equations (41) and (42), we consider the

6 The cumulative consumed cpu time already reaches 50 years.
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case where w0 = w1 �= 0, solution of equation (33). The rotational symmetry is broken when
the collective motion appears, and we take e‖ = w1/|w1| as a first vector of the geometrical
basis. Then we define two angles ϑ1 and ϑ2 between e‖ and the directions of δw0 and q,

respectively. We denote as e⊥ the unit vector orthogonal to e‖ such that (e‖, e⊥) form a direct
basis.

From equations (44) and (45), we project the resulting vectorial equation onto e‖ and e⊥,
and we eliminate the ratio δw0/δρ0 from the continuity equation, yielding

s[s + iγw1q cos ϑ2 + νq2] cos ϑ1 =
[
−1

2
v2

0q cos(ϑ1 − ϑ2) + isκw1 cos ϑ1

]
q cos ϑ2

− [
2sξw2

1 cos ϑ1 + i
(
μ′ − ξ ′w2

1 + sκ
)
qw1 cos(ϑ1 − ϑ2)

]
, (B.1)

s
[
s + iγw1q cos ϑ2 + νq2] sin ϑ1 =

[
−1

2
v2

0q cos(ϑ1 − ϑ2) + isκw1 cos ϑ1

]
q sin ϑ2, (B.2)

where q and w1 are real and positive. These are two polynomial equations that we will study
at a given point (ρ, σ ) of the phase diagram, for a set of physical variables (d0, λ, v0) and for
different pairs (ϑ1, ϑ2). For all fixed parameters, the solutions of those equations will be a
discrete number of sets (q, s).

First, one can check that this set of equations is invariant when δw0 is rotated with an
angle of π (ϑ1 → ϑ1 + π ). Note also that every real term depends on an even power of q. So
one can expect that the real part of the growth rate �[s] only depends on even powers of q,
and that �[s] remains invariant when ϑ2 is changed into ϑ2 + π . That is why we will study
equations (B.1) and (B.2) for (ϑ1, ϑ2) ∈ [0, π [ × [0, π [.

A third property arises clearly when we introduce the expressions (28)–(32) of the transport
coefficients in equations (B.1) and (B.2): the wavenumber q appears only through the product
qB0d0, meaning that the solutions q are proportional to 1/Bd0. As already mentioned, the
framework of the kinetic approach implies that B is large, and therefore it implies that we
are studying long wavelength perturbations. This analysis also shows that the growth rate
depends only on the dimensionless control parameter p, the noise amplitudes σ and σ0, and
the self-diffusion rate λ which gives the proper unit to s. Let us also mention that a trivial
solution of the system of equations is s = 0 for q = 0. This solution is actually an artefact of
the calculation procedure (namely a multiplication by s), as it is not a solution of the original
equations (41) and (42). Hence we will not consider this extra solution in the following.

For some parameters (ϑ1, ϑ2), one or several terms can vanish, and the degree of the
polynomials may decrease. We will first study the general equations and those particular
cases will be considered later. If we combine ((B.1) × sin ϑ1− (B.2)× cos ϑ1), we get a linear
equation in s:

s = −q cos(ϑ1 − ϑ2)

2w1

qv2
0 sin(ϑ1 − ϑ2) + 2iw1

(
μ′ − ξ ′w2

1

)
sin ϑ1

2ξw1 cos ϑ1 sin ϑ1 + iqκ sin ϑ2
. (B.3)

Indeed, we verify that �[s] is an even function of q. Now we can replace s by its
expression in equation (B.2). The resulting equation is a third-degree polynomial that can be
formally written as

d3q
3 + id2q

2 + d1q + id0 = 0, (B.4)

where the coefficients di are real functions of (p, σ, σ0, B) and of (ϑ1, ϑ2). The last three
coefficients are rather difficult to manipulate. But this equation can be easily solved using
Cardano’s method for instance. In the case where

d3 = sin ϑ1 sin ϑ2 sin(ϑ1 − ϑ2) cos(ϑ1 − ϑ2) (B.5)
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Figure B1. Stability against inhomogeneous perturbations, solutions of equations (B.3) and (B.4)
so that �[q] = 0. (a) (ϑ1, ϑ2), with σ = σ0 = 0.5, p = 0.22 (dot-dashed line), 0.30 (dashed),
0.40 (full line). (b) �[s] versus q, same parameters as (a), �[s] increases when p increases.

does not vanish, we compute the solutions. The resulting values q are complex numbers,
so that they cannot correspond to physical solutions. Yet, for some sets of angles (ϑ1, ϑ2),
the solutions for q are real. We are interested only in these modes. Determining the angles
(ϑ1, ϑ2) for which q is real, we then compute the growth rate �[s+] using equation (B.3).
There are four different branches (see figures B1(a)), whose lengths increase when the control
parameter is chosen deeper in the collectively moving phase (i.e. at low σ or at high p). For all
sets of parameters for which we have computed the growth rate, its real part remains negative
(figure B1(b)). Thus the homogeneous moving phase is stable against finite wavelength
perturbations in the general case.

The above calculation relies on the assumption that d3 �= 0. This assumption is not valid
in either of the following four cases:

• a longitudinal instability (sin ϑ1 = 0),

• a wave vector q colinear to the direction of the main motion (sin ϑ2 = 0),

• a perturbation δw0 colinear to the wave vector q (sin(ϑ1 − ϑ2) = 0).

• a perturbation δw0 perpendicular to the wave vector q (cos(ϑ1 − ϑ2) = 0).

We first consider the study of stability under a longitudinal perturbation: w1 and δw0 are
colinear. Then equation (B.2) vanishes in two cases:

s = − iqv2
0 cos ϑ2

2κw1
, or sin ϑ2 = 0.

Replacing s by the first expression in equation (B.1), we can show that there is no authorized
mode, in other words �[q] �= 0. So, equation (B.2) vanishes only for ϑ1 = ϑ2 = 0. The
corresponding stability analysis is presented in detail in section 4.2.3.

For any of the last three cases, we solve equations (B.2) and (B.2), and we find that either
there is no authorized mode (q is complex) or �[s+] � 0. Thus none of those cases is related
to an unstable mode.

To sum up, this study of the stability of the homogeneous stationary moving phase shows
that the longitudinal direction is the only mode which can be unstable. This result is consistent
with the observations made in numerical simulations [14, 15].
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